Journal of Physical Chemistry B, Vol.111, No.11, 2925-2931, 2007
Simple physics-based analytical formulas for the potentials of mean force for the interaction of amino acid side chains in water. 3. Calculation and parameterization of the potentials of mean force of pairs of identical hydrophobic side chains
The potentials of mean force of homodimers of the molecules modeling hydrophobic amino acid side chains (ethane (for alanine), propane (for proline), isobutane (for valine), isopentane (for leucine and isoleucine), ethylbenzene (for phenylalanine), and methyl propyl sulfide (for methionine)) were determined by umbrella-sampling molecular dynamics simulations in explicit water as functions of distance and orientation. Analytical expressions consisting of the Gay-Berne term to represent effective van der Waals interactions and the cavity term derived in paper 1 of this series were fitted to the potentials of mean force. The positions and depths of the contact minima and the positions and heights of the desolvation maxima, including their dependence on the orientation of the molecules, were well represented by the analytical expressions for all systems, which justifies use of such potentials in coarse-grain protein-folding simulations.