화학공학소재연구정보센터
Journal of Applied Electrochemistry, Vol.37, No.5, 605-616, 2007
Adaptive, multi-parameter battery state estimator with optimized time-weighting factors
We derive and implement a battery control algorithm that can accommodate an arbitrary number of model parameters, with each model parameter having its own time-weighting factor, and we propose a method to determine optimal values for the time-weighting factors. Time-weighting factors are employed to give greater impact to recent data for the determination of a system's state. We employ the (controls) methodology of weighted recursive least squares, and the time weighting corresponds to the exponential-forgetting formalism. The output from the adaptive algorithm is the battery state of charge (remaining energy), state of health (relative to the battery's nominal performance), and predicted power capability. Results are presented for a high-power lithium ion battery.