화학공학소재연구정보센터
Atomization and Sprays, Vol.17, No.3, 233-265, 2007
Gasoline sprays injected at different back pressures: Calculations using two atomization models
A numerical study of pressure-swirl hollow-cone sprays injected at two different ambient pressures is presented to simulate the gasoline direct-injection process. Only nonreacting sprays are considered, with the focus being on the breakup and atomization processes. Two different breakup models have been evaluated, (1) a hybrid version of a sheet length model combined with the Taylor analogy breakup as a secondary breakup model and (2) the surface wave instability breakup, model. Two test cases, injection into atmospheric and above-atmospheric ambient pressure were computed for the assessment of the breakup models. Comparison of calculations with experimental data reveals sufficient agreement. However, the models' performance was case dependent, which suggested further investigation of their breakup mechanisms.