화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.45, No.3, 258-263, June, 2007
암모니아수 흡수제를 이용한 이산화탄소 제거 공정에서 침전생성이 조업 영역에 미치는 영향
Effect of Precipitation on Operation Range of the CO2 Capture Process using Ammonia Water Absorbent
E-mail:
초록
배가스 이산화탄소 처리를 위한 화학적 흡수공정의 새로운 흡수제로서 암모니아수의 적용 가능성을 고찰하였다. 이산화탄소 흡수용량과 침전 발생의 관점에서 적합한 암모니아수 흡수제 농도와 CO2 부하(loading, molCO2/molNH3)를 결정하였다. 이를 위하여 전해액에 대한 Pitzer 모델을 이용하여 암모니아 흡수제 농도에 따른 흡수용량과 침전 발생여부를 계산하였다. 5 molNH3/kgH2O 이상의 암모니아수 흡수제를 사용하여 기존 아민류 흡수제 이상의 흡수용량은 얻을 수 있었다. 각 암모니아 흡수제 농도에서 NH4HCO3 침전의 발생으로 인하여 조업이 제약되는 CO2 부하를 구하였다. 5~14 molNH3/kgH2O의 암모니아 흡수제는 293, 313 K에서 CO2 부하 0.5 이상에서 침전이 발행하였다. 침전 생성 CO2 부하값 이하로 흡수탑을 조업함으로써 고농도 암모니아 흡수제가 배가스 CO2 처리 공정에 사용될 수 있음을 알 수 있었다. 흡수용량과 침전발생을 고려하여 배가스 이산화탄소 처리를 위한 흡수제 최적온도는 암모니아수 농도에 따라 297~312 K이었다.
Ammonia water was investigated as a new absorbent of the chemical absorption process for the removal of CO2 in flue gas. The suitable range of ammonia water concentration and CO2 loading (mol CO2/mol NH3) were decided in the point of view of CO2 absorption capacity and NH4HCO3 precipitation. The absorption capacity of CO2 and the precipitation of NH4HCO3 in liquid phase were calculated by the Pitzer model for electrolyte solution. The CO2 absorption capacity of the ammonia water over 5 molNH3/kgH2O was higher than that of conventional amine absorbent. The CO2 loadings where precipitation occurred were decided at various absorbent concentrations. Theses values were higher than 0.5 in the concentration range of 5-14 molNH3/kgH2O at 293, 313 K. The absorber for the removal of CO2 in flue gas could be operated without NH4HCO3 precipitation by using high concentration of ammonia water below these CO2 loading values. The optimum temperature of the ammonia water absorbent for removal of CO2 in flue gas was 297-312 K depending on the concentration of ammonia water.
  1. Chakma A, Energy Conv. Manag., 36(6), 405 (1995)
  2. Yeh AC, Bai H, Sci. Total Environ., 228(2), 121 (1999)
  3. Bai HL, Yeh AC, Ind. Eng. Chem. Res., 36(6), 2490 (1997)
  4. Edwards TJ, Maurer G, Newman J, Prausnitz JM, AIChE J., 24(6), 966 (1978)
  5. Bieling V, Rumpf B, Maurer G, Fluid Phase Equilib., 53, 251 (1989)
  6. Pitzer KS, J. Phys. Chem., 77(2), 268 (1973)
  7. Bieling V, Kurz F, Rumpf B, Maurer G, Ind. Eng. Chem. Res., 34(4), 1449 (1995)
  8. Kurz F, Rumpf B, Maurer G, Fluid Phase Equilib., 104, 261 (1995)
  9. Van Krevelen DW, Hoftijzer PJ, Huntjens FJ, Rec. Trav. Chim. Pays-bas, 68, 191 (1949)
  10. Shen KP, Li MH, J. Chem. Eng. Data, 37(1), 96 (1992)
  11. Li MH, Chang BC, J. Chem. Eng. Data, 39(3), 448 (1994)
  12. Seo DJ, Hong WH, J. Chem. Eng. Data, 41(2), 258 (1996)