화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.45, No.2, 124-132, April, 2007
Sn-modified Platinized Ti 전극 제조를 위한 Ti의 백금 도금 특성
Characteristics of Ti Platinization for Fabrication Sn-modified Platinized Ti Electrode
E-mail:
초록
본 논문에서는 Ti 모재에 대한 Pt 도금 특성 연구를 통하여 안정한 platinized Ti 전극의 제조 방법이 제시되었으며, Sn이 흡착된 platinized Ti 전극의 질산염 이온에 대한 전기화학적 특성이 연구되었다. 에칭된 Ti 모재 표면에 전착된 Pt 도금 층 내에 적당하게 공간적 틈을 갖도록 도금하는 것은 도금 후 표면에 잔존하는 도금 용액 오염원을 제거하는데 효과적이며, 또 용액과 접하게 되는 전극의 실제 표면적을 최대화할 수 있었다. 제작된 platinized Ti 전극을 끓이는 과정과 전해 세정 과정을 통해 안정적이며 재현성 있게 만드는 것은 Sn-modified platinized Ti 전극에서 표면의 Sn 덮힘율을 정량화하는데 있어 매우 중요하였다. 전해 세정 과정은 전극 표면에 형성된 솜털과 같은 미세한 돌기들이 없어지면서 전극 표면을 안정화된 구조로 변화시켰다. 본 연구의 경우 질산염 이온의 환원을 목적으로 하는 Sn-modified platinized Ti 전극은 약 30분 도금 시간을 통해 제조한 경우가 가장 좋았다.
This work investigated a fabrication way of stable platinized Ti electrode and evaluated the electrochemical characteristics of the Sn-modified platinized Ti electrode in nitrate solution. A Pt electro-plating way to form some open special clearances within the Pt coating layer on etched Ti substrate was very important to remove effectively the residual contaminate due to plating solution out of the fabricated electrode surface and to maximize the actual electrode surface area contacting solution. Both boiling and electro-cleaning processes of the fabricated electrode was essential to obtain a stable platinized-Pt electrode with reproducible and stable surface property which was necessary for the correct evaluation of Sn coverage on the electrode. The electro-cleaning caused a morphology change of the platinized Ti electrode surface with some downy hair-like polyps formed during the deposition disappearing, which made the electrode stable. The Sn-modified platinized Ti electrode in this work showed the best electro-activity for nitrate reduction, when it was fabricated through the Pt electro-plating of about 30 minutes.
  1. Greenwood NN, Earnshaw A, Perggamon Press, Oxford (1984)
  2. Lamypitara E, Barbier J, Appl. Catal. A: Gen., 149(1), 49 (1997)
  3. Kerkeni S, Lamy-Pitara E, Barbier J, Chemical Today, 75, 35 (2002)
  4. Gootzen JF, Peeters PG, Dukers JM, Lefferts L, Visscher W, Vanveen JA, J. Electroanal. Chem., 434(1-2), 171 (1997)
  5. de Vooys ACA, van Santen RA, van Veen JAR, J. Mol. Catal. A-Chem., 154, 203 (2002)
  6. Shimazu K, Goto R, Tada K, Chem. Lett., 2, 204 (2002)
  7. Hayfield PCS, Platinum Metals Reviews, 27(1), 2 (1983)
  8. Evans SAG, Terry JG, Plank NOV, Walton AJ, Keane LM, Campbell CJ, Ghazal P, Beattie JS, Su TJ, Crain J, Mount AR, Electrochem. Commun., 7, 125 (2005)
  9. Pazer JFI, Yao SA, Wolfson SK, J. Mol. Catal. A-Chem., 70, 217 (1991)
  10. Feltham AM, Spiro M, Chem. Rev., 71(2), 177 (1971)
  11. Iniesta J, Garcia JG, Fernandez J, Montiel V, Aldaz A, J. Mater. Sci., 9, 3141 (1999)
  12. Hu CC, Liu KY, Electrochim. Acta, 44(16), 2727 (1999)
  13. Shimazu K, Goto R, Tada K, J. Electroanal. Chem., 529, 20 (2002)
  14. Horanyi G, Rizmayer EM, J. Electroanal. Chem., 140, 347 (1982)
  15. Tada K, Shimazu K, J. Electroanal. Chem., 577(2), 303 (2005)
  16. Kim KW, Lee EH, Kim JS, Shin KH, Kim KH, J. Electrochem. Soc., 148(3), B111 (2001)
  17. Baumgartner ME, Raub CJ, Platinum Metals Rev., 32(4), 188 (1988)
  18. Bakos I, Horanyi G, J. Electroanal. Chem., 397(1-2), 105 (1995)
  19. Burke LD, Casey JK, Morrisey JAE, Electrochim. Acta, 38(7), 897 (1993)
  20. Burke LD, Murphy MM, J. Electroanal. Chem., 305, 301 (1991)
  21. Takasu Y, Fujii Y, Yasuda K, Iwanaga Y, Matusuda Y, Electrochim. Acta, 34, 453 (1989)