- Previous Article
- Next Article
- Table of Contents
Journal of Industrial and Engineering Chemistry, Vol.13, No.2, 163-169, March, 2007
Use of Chelating Polymers to Enhance Manganese Removal in Ultrafiltration for Drinking Water Treatment
E-mail:
The removal of dissolved manganese ions from groundwater by ultrafiltration (UF) membranes was investigated through the addition of chelating poly(acrylic acid) (PAA) polymers of different molecular weight (MW) at various values of pH. An improved degree of removal of manganese was achieved upon the addition of PAA into feedwater during UF. The manganese rejection efficiency depended on the dosage of PAA, but not on the MW of PAA, indicating that the interactions of manganese with the carboxyl groups in PAA was independent of the length of the polymer chain. Sulfate ions present in the feedwater resulted in lower manganese rejection efficiencies as a result of Donnan exclusion, while hardness competed with manganese significantly in the chelation reactions with PAA. An equilibrium model developed in this study made it possible to predict the manganese rejection efficiency at different PAA dosages and values of pH. The UF flux did not always decrease with higher PAA dosages, possibly because of coagulation and restabilization of PAA in the presence of divalent metals (e.g., manganese and hardness).
- Tien VN, Chaudhary DS, Ngo HH, Vigneswaran S, J. Ind. Eng. Chem., 10(3), 337 (2004)
- Huang JY, Takizawa S, Fujita K, Water Sci. Technol., 41, 77 (2000)
- Thanuttamavong M, Yamamoto K, Oh JI, Choo KH, Choi SJ, Desalination, 145(1-3), 257 (2002)
- Choo KH, Lee H, Choi SJ, J. Membr. Sci., 267(1-2), 18 (2005)
- Voges LE, Benjamin MM, Chang YJ, J. Environ. Eng.-ASCE, 127, 411 (2001)
- Chang JS, Chen CC, Sep. Sci. Technol., 34, 1607 (1999)
- Barba D, Beolchini F, Veglio F, Hydrometallurgy, 59, 89 (2001)
- Chuichulcherm S, Nagpal S, Peeva L, Livingston A, J. Chem. Technol. Biotechnol., 76(1), 61 (2001)
- Mack C, Burgess JE, Duncan JR, Water SA, 30, 521 (2004)
- Juang RS, Xu YY, Chen CL, J. Membr. Sci., 218(1-2), 257 (2003)
- Fillipi BR, Brant LW, Scamehorn JF, Christian SD, J. Colloid Interface Sci., 213(1), 68 (1999)
- Ura P, Prakorn R, Weerawat P, J. Ind. Eng. Chem., 11(6), 926 (2005)
- Hwang ED, Lee KW, Choo KH, Choi SJ, Kim SH, Yoon CH, Lee CH, Desalination, 147(1-3), 289 (2002)
- Choo KH, Kwon DJ, Lee KW, Choi SJ, Environ. Sci. Technol., 36, 1330 (2002)
- Geckeler KE, Bayer E, Anal. Chim. Acta, 189, 285 (1986)
- Chaufer B, Deratani A, Nucl. Chem. Waste Manag., 8, 175 (1998)
- Rumeau M, Sciers F, Persin M, Sarrazin J, J. Membr. Sci., 73, 313 (1992)
- Geckeler KE, Volchek K, Environ. Sci. Technol., 30, 725 (1996)
- Muslehiddinoglu J, Uludag Y, Ozbelge HO, Yilmaz L, J. Membr. Sci., 140(2), 251 (1998)
- Zhu XS, Choo KH, Park JM, Desalination, 193(1-3), 350 (2006)
- Fatin-Rouge N, Dupont A, Vidonne A, Dejeu J, Fievet P, Foissy A, Water Res., 40, 1303 (2006)
- Verbych S, Bryk M, Alpatova A, Chornokur G, Desalination, 179(1-3), 237 (2005)
- Vieira M, Tavares CR, Bergamasco R, Petrus JCC, J. Membr. Sci., 194(2), 273 (2001)
- Peeters JMM, Boom JP, Mulder MHV, Strathmann H, J. Membr. Sci., 145(2), 199 (1998)
- Gregor HP, Luttinger LB, Loebl EM, J. Phys. Chem., 59, 34 (1955)
- Juang RS, Chen MN, Ind. Eng. Chem. Res., 35(6), 1935 (1996)