Korea-Australia Rheology Journal, Vol.19, No.1, 35-42, March, 2007
Using oscillatory shear to probe the effects of bidispersity in inverse ferrofluids
E-mail:
The effects of particle size distribution on the magnetorheological response of inverse ferrofluids was investigated using controlled mixtures of two monodisperse non-magnetisable powders of sizes 4.6 μm and 80 μm at constant volume fraction of 30%, subjected to large amplitude oscillatory shear flow. In the linear viscoelastic regime (pre-yield region), it was found that the storage and loss moduli were dependent on the particle size as well as the proportion of small particles, with the highest storage modulus occurring for the monodisperse small particles. In the nonlinear regime (post yield region), Fourier analysis was used to compare the behaviour of the 1st and 3rd harmonics (I1 and I3 respectively) as well as the fundamental phase angle as functions of the applied strain amplitude. The ratio of I3/I1 was found to become more pronounced with decreasing particle size as well as with increasing proportion of small particles in the bidisperse mixtures. Furthermore, the phase angle was able to clearly show the transition from solid-like to viscous behaviour. The results suggested that the nonlinear response of a bidisperse IFF is dependent on particle size as well as the proportion of small particles in the system.
Keywords:inverse ferrofluid;large amplitude oscillatory shear flow;particle size distribution;bidisperse;linear/nonlinear viscoelastic;Fourier analysis
- Block H, Kelly JP, J. Phys. D-Appl. Phys., 21, 1661 (1988)
- Bombard AJF, Knobel M, Alcantara MR, Joekes I, J. Int. Mat. Syst. Struct, 13, 471 (2002)
- Bossis G, Lemaire E, J. Rheol., 35, 1345 (1991)
- Claracq J, Sarrazin J, Montfort J, Rheol. Acta, 43, 38 (2004)
- De Gans BJ, Blom C, Philipse AP, Mellema J, Phys. Rev. E, 60, 4518 (1999)
- de Gans BJ, Duin NJ, van den Ende D, Mellema J, J. Chem. Phys., 113(5), 2032 (2000)
- Ekwebelam CC, See H, Determining the flow curves of an inverse ferrofluid (submitted) (2006)
- Gamota DR, Filisko FE, J. Rheol., 35, 399 (1991)
- Gamota DR, Filisko FE, J. Rheol., 35, 1411 (1991)
- Gamota DR, Filisko FE, Linear/non-linear mechanical properties of electrorheological materials, in Tao R. (ed), Proc. Int. Conf. on ERFs, World Scientific Publishing Co., New Jersey, 246-263 (1991)
- Gamota DR, Wineman AS, Filisco FE, J. Rheol., 37, 919 (1993)
- Iyengar VR, Alexandridis AA, Tribol. Trans., 47, 23 (2004)
- Kittipoomwong D, Klingenberg DJ, Ulicny JC, J. Rheol., 49(6), 1521 (2005)
- Klingenberg DJ, AIChE J., 47(2), 246 (2001)
- Kordonski WI, Golini D, J. Intell. Mater. Syst. Struct., 10, 83 (2000)
- Lemaire E, Meunier A, Bossis G, J. Rheol., 39(5), 1011 (1995)
- Li WH, Du HJ, Chen G, Yeo SH, Guo NQ, Rheol. Acta, 42(3), 280 (2003)
- Lim ST, Cho MS, Jang IB, Choi HJ, J. Magn. Magn. Mater., 282, 170 (2004)
- Magnac G, Meneroud P, Six MF, Patient G, Leletty R, Claeyssen F, Characterisation of magneto-rheological fluids for actuators applications, ACTUATOR 2006, 10th International Conference on New Actuators, Bremen, Germany, 856-859 (2006)
- Ota M, Miyamoto T, J. Appl. Phys., 76, 5528 (1994)
- Otsubo Y, Sekine M, Katayama M, J. Rheol., 36, 479 (1992)
- PARTHASARATHY M, KLINGENBERG DJ, Rheol. Acta, 34(5), 430 (1995)
- Parthasarathy M, Klingenberg DJ, Mater. Sci. Eng. R-Rep., 17, 57 (1996)
- Parthasarathy M, Klingenberg DJ, J. Non-Newton. Fluid Mech., 81(1-2), 83 (1999)
- Popplewell J, Rosenweig RE, Siller JK, J. Magn. Magn. Mater., 149, 53 (1995)
- Popplewell J, Rosenweig RE, J. Phys. D-Appl. Phys., 29, 2297 (1996)
- Saldivar-Guerrero, Richter R, Rehberg I, Aksel N, Heymann L, Rodriguez-Fernandez OS, Magnetohydrodynamics, 41, 385 (2005)
- Saldivar-Guerrero, Richter R, Rehberg I, Aksel N, Heymann L, Rodriguez-Fernandez OS, J. Chem. Phys., 125, 1 (2006)
- See H, Korea-Aust. Rheol. J., 11(3), 169 (1999)
- See H, Field JS, Pfister B, J. Non-Newton. Fluid Mech., 84(2-3), 149 (1999)
- See H, Kawai A, Ikazaki F, Rheol. Acta, 41(1-2), 55 (2002)
- See H, Chen RD, Rheol. Acta, 43(2), 175 (2004)
- See H, Chen R, Keentok M, Colloid Polym. Sci., 282, 423 (2004)
- Shih YH, Conrad H, Int. J. Mod. Phys. B, 8, 2835 (1994)
- Sim HG, Ahn KH, Lee SJ, J. Rheol., 47(4), 879 (2003)
- Skjeltorp AT, Phys. Rev. Lett., 51, 2306 (1983)
- Stanway R, Sproston JL, El-Wahed AK, Smart Mater. Struct., 5, 464 (1996)
- Trendler AM, Bose H, Influence of particle size on the rheological properties of magnetorheological suspensions, in Lu K., Shen R. and Liu J. (eds), Proc. 9th Int. Conf. of Electrorheological Fluids and Magnetorheological Suspensions, Beijing, China World Scientific, Singapore, 433-438 (2004)
- Volkova O, Bossis G, Guyot M, Bashtovoi V, Reks A, J. Rheol., 44(1), 91 (2000)
- Weiss KD, Carlson JD, Nixon DA, J. Intell. Mater. Syst. Struct., 5, 772 (1994)
- Wereley NM, Chaudhuri A, Yoo JH, John S, Kotha S, Suggs A, Radhakrishnan R, Love BJ, Sudarshan TS, J. Intell. Mater. Syst. Struct., 17, 393 (2006)
- Wilhelm M, Maring D, Spiess HW, Rheol. Acta, 37, 399 (1995)
- Wu CW, Conrad H, J. Appl. Phys., 83, 3880 (1998)