화학공학소재연구정보센터
Langmuir, Vol.23, No.5, 2525-2530, 2007
Monte Carlo simulation of equilibrium reactions at modified vapor-liquid interfaces
The equilibrium conversion of a chemical reaction is known to be affected by its local environment. Various factors may alter reaction equilibria, including shifts in pressure or temperature, solvation, adsorption within porous materials, or the presence of an interface. Previously, reactive Monte Carlo simulations have been used to predict the equilibrium behavior of chemical reactions at vapor-liquid interfaces. Here, a route is tested for tuning the interfacial conversion of a Lennard-Jones dimerization reaction by adding surfactants to the vapor-liquid interface. Several temperatures are explored as well as several different surfactant models. Even with the addition of a small concentration of surfactants, the simulations predict significant shifts in the conversion at the interface. In general, the shifts in the conversion tend to be related to the values of the interfacial tension.