Journal of the American Chemical Society, Vol.129, No.8, 2287-2296, 2007
Conductivity in alkylamine/gold and alkanethiol/gold molecular junctions measured in molecule/nanoparticle/molecule bridges and conducting probe structures
Charge transport through alkane monolayers on gold is measured as a function of molecule length in a controlled ambient using a metal/molecule/nanoparticle bridge structure and compared for both thiol and amine molecular end groups. The current through molecules with an amine/gold junction is observed to be more than a factor of 10 larger than that measured in similar molecules with thiol/gold linkages. Conducting probe atomic force microscopy is also used to characterize the same monolayer systems, and the results are quantitatively consistent with those found in the nanoparticle bridge geometry. Scaling of the current with contact area is used to estimate that similar to 100 molecules are probed in the nanoparticle bridge geometry. For both molecular end groups, the room-temperature conductivity at low bias as a function of molecule length shows a reasonable fit to models of coherent nonresonant charge tunneling. The different conductivity is ascribed to differences in charge transfer and wave function mixing at the metal/molecule contact, including possible effects of amine group oxidation and molecular conformation. For the amine/Au contact, the nitrogen lone pair interaction with the gold results in a hybrid wave function directed along the molecule bond axis, whereas the thiol/Au contact leads to a more localized wave function.