Journal of Materials Science, Vol.42, No.4, 1269-1278, 2007
Elastic properties of powders during compaction. Part 2: elastic anisotropy
Isotropy in the elastic properties of powders undergoing uniaxial compaction in a cylindrical die was evaluated from in situ measurements of elastic wave speed. Shear and bulk longitudinal wave speeds were measured in both the axial (pressing) and radial directions. For the five different metal powders studied, wave speeds were generally higher in the axial direction. As such, the powder body was best described as a transversely isotropic material; complete isotropy was approached only when the powder was close to the loose packed state, or completely solid. Transversely isotropic elastic moduli analogous to the common isotropic 'engineering' moduli (Young's modulus, Poisson's ratio, etc.) were calculated by combining elastic wave speed measurements with the Saint-Venant approximation. Pseudo-isotropic elastic moduli (calculated from axial wave speed measurements and assuming elastic isotropy) were found to be only qualitatively similar to transversely isotropic elastic moduli for the axial plane.