화학공학소재연구정보센터
Applied Mathematics and Optimization, Vol.55, No.1, 93-122, 2007
Optimal long-term investment model with memory
We consider a financial market model driven by an R-n-valued Gaussian process with stationary increments which is different from Brownian motion. This driving-noise process consists of n independent components, and each component has memory described by two parameters. For this market model, we explicitly solve optimal investment problems. These include: (i) Merton's portfolio optimization problem; (ii) the maximization of growth rate of expected utility of wealth over the infinite horizon; (iii) the maximization of the large deviation probability that the wealth grows at a higher rate than a given benchmark. The estimation of parameters is also considered.