화학공학소재연구정보센터
Journal of Catalysis, Vol.245, No.2, 401-414, 2007
Characterisation and microstructure of Pd and bimetallic Pd-Pt catalysts during methane oxidation
The catalytic oxidation of methane was studied over Pd/Al2O3 and Pd-Pt/Al2O3. It was found that the activity of Pd/Al2O3 gradually decreases with time at temperatures well below that of PdO decomposition. The opposite was observed for Pd-Pt/Al2O3, of which the activity decreases slightly with time. Morphological studies of the two catalysts showed major changes during operation. The palladium particles in Pd/Al2O3 are initially composed of smaller, randomly oriented crystals of both PdO and Pd. In oxidising atmospheres, the crystals become more oxidised and form larger crystals. The activity increase of Pd-PuAl2O3 is probably related to more PdO being formed during operation. The particles in Pd-Pt/Al2O3 are split into two different domains: one with PdO and the other likely consisting of an alloy between Pd and Pt. The alloy is initially rich in palladium, but the composition changes to a more equalmolar Pd-Pt structure during operation. The ejected Pd is oxidised into PdO, which is more active than its metallic phase. The amount of PdO formed depends on the oxidation time and temperature. (c) 2006 Elsevier Inc. All rights reserved.