화학공학소재연구정보센터
Journal of Applied Polymer Science, Vol.103, No.6, 3730-3738, 2007
Cation exchange finishing of nonwoven polyester with polycarboxylic acids and cyclodextrins
We describe a chemical method for the finishing of polyester nonwoven fabrics that aimed to obtain ion exchange textiles. This approach was based on the use of polycarboxylic acids (PCA) and cyclodextrins as carbohydrate compounds and finishing agents, respectively. It was observed that the reaction between these reactants yielded a crosslinked polymer that was physically anchored onto the fibers. This polymer can be considered as a resin issued from the esterification between the COOH groups of the PCA with the CH groups of the carbohydrate. As the esterification reaction was not complete, many free carboxylic groups remained on the surface of the coating polymer. This feature offered the ion exchange properties to the textile support. In this article, we described the pad-dry-cure process and showed the influence of the curing parameters (time and temperature), the nature, and the concentration of the components and the pH of the impregnating bath. The grafting rate (in wt %) and the ion exchange capacity (IEC) were observed in parallel. First, it was observed that the best IEC capacity (that could reach 1 mmol/g) was obtained when an ideal compromise was applied between time and temperature of curing. We also evidenced that IEC depended on the nature and on the concentration of the PCA (chosen among citric acid, 1,2,3,4-butanetetracarboxylic acid, and polyacrylic acid) and on the pH of the impregnating bath. Finally, it was observed that cyclodextrins were more appropriate than starch as finishing coreactants. (c) 2006 Wiley Periodicals, Inc.