화학공학소재연구정보센터
IEEE Transactions on Automatic Control, Vol.52, No.2, 299-305, 2007
Throughput in processor-sharing queues
Processor-sharing queues are often used to model file transmission in networks. While sojourn time is a common performance metric in the queueing literature, average transmission rate is the more commonly discussed metric in the networking literature. Whereas much is known about sojourn times, there is little known about the average service rate experienced by jobs in processor-sharing queues. We first define the average rate as observed by users and by the queue. In an M/M/1 processor-sharing queue, we give closed-form expressions for these average rates, and prove a strict ordering amongst them. We prove that the queue service rate (in bps) is an increasing function of the minimum required average transmission rate, and give a closed-form expression for the marginal cost associated with such a performance requirement. We then consider the effect of using connection access control by modeling an M/M/1/K processor-sharing queue. We give closed-form expressions for average transmission rates, and discuss the relationship between the queue service rate (in bps), the queue limit, the average rate, and the blocking probability.