Langmuir, Vol.23, No.3, 1394-1402, 2007
Resonance frequencies of meniscus waves as a physical mechanism for a DNA biosensor
This paper presents a liquid surface biosensor whose potential applications are analogue to the well-known quartz crystal microbalance. The technique involved is based on the resonance of meniscus capillary waves here excited at a functionalized air-water interface. The strategy proposed in this paper can be seen as a promising way to avoid as much as possible any transfer of Blodgett type. Meniscus capillary waves supplied by the electrodynamical vibration of a brimful cylinder filled with water are used as a way to characterize the surface aging of an air-water interface covered by a lipidic monolayer. An optical technique based on one-dimensional interferometry is developed to measure continuously the resonant behavior of the surface elevation at the center of the cell around the natural frequencies of the meniscus waves. The frequency dependence of the wave amplitude is investigated during the transient regime associated to the immobilization of DNA strands at the lipidic matrix. Resonant frequencies are found to be very sensitive to the chemical loading supported by the air-water interface. The technique is seen as a mean to discriminate between single- and double-stranded DNA.