화학공학소재연구정보센터
Langmuir, Vol.23, No.1, 20-24, 2007
Nanostructure and transition of a strong polyelectrolyte brush at the air/water interface
The strong polyelectrolyte layer in the monolayer of ionic amphiphilic diblock copolymers at the air/water interface consists of carpet and brush layers when the brush density is satisfactorily high like that of the weak acid polymer. Also, a drastic structural change was induced by the addition of salt to the brush layer. In this study, the critical brush density for the transition between "carpet-only" and "carpet + brush" structures for the strongly ionic amphiphilic diblock copolymer, poly(hydrogenated isoprepene)-b-poly(styrene sulfonic acid) sodium salt, monolayer was measured by an in situ X-ray reflectivity technique. The critical brush density was found to be about 0.12 nm(-2), which is lower than that observed for a weak acid polymer and, unlike the weak acid polymer, is independent of the hydrophilic chain length. This difference might be attributed to the strong ionic nature of the brush chain. In addition, the reversibility of the transition was confirmed. The effect of salt addition to the nanostructure of the carpet layer was examined in detail. No structural change was found, indicating that most of the ionic groups in the carpet layer do not show an ionic nature because of counterion condensation.