화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.129, No.2, 305-312, 2007
Mechanistic study of precursor evolution in colloidal group II-VI semiconductor nanocrystal synthesis
The molecular mechanism of precursor evolution in the synthesis of colloidal group II-VI semiconductor nanocrystals was studied using H-1, C-13, and P-31 NMR spectroscopy and mass spectrometry. Tri-n-butylphosphine chalcogenides (TBPE; E = S, Se, Te) react with an oleic acid complex of cadmium or zinc (M-OA; M = Zn, Cd) in a noncoordinating solvent (octadecene (ODE), n-nonane-d(20), or n-decane-d(22)), affording ME nanocrystals, tri-n-butylphosphine oxide (TBPO), and oleic acid anhydride ((OA)(2)O). Likewise, the reaction between trialkylphosphine selenide and cadmium n-octadecylphosphonic acid complex (Cd-ODPA) in tri-n-octylphosphine oxide (TOPO) produces CdSe nanocrystals, trialkylphosphine oxide, and anhydrides of n-octadecylphosphonic acid. The disappearance of tri-n-octylphosphine selenide in the presence of Cd-OA and Cd-ODPA can be fit to a single-exponential decay (k(obs) = (1.30 +/- 0.08) x 10(-3) s(-1), Cd-ODPA, 260 degrees C, and k(obs) = (1.51 +/- 0.04) x 10(-3) s(-1), Cd-OA, 117 degrees C). The reaction approaches completion at 70-80% conversion of TOPSe under anhydrous conditions and 100% conversion in the presence of added water. Activation parameters for the reaction between TBPSe and Cd-OA in n-nonane-d(20) were determined from the temperature dependence of the TBPSe decay over the range of 358-400 K (Delta H = 62.0 +/- 2.8 kJ center dot mol(-1), Delta S = -145 +/- 8 J center dot mol(-1)center dot K-1). A reaction mechanism is proposed where trialkylphsophine chalcogenides deoxygenate the oleic acid or phosphonic acid surfactant to generate trialkylphosphine oxide and oleic or phosphonic acid anhydride products. Results from kinetics experiments suggest that cleavage of the phosphorus chalcogenide double bond (TOPE) proceeds by the nucleophilic attack of phosphonate or oleate on a (TOPE)M complex, generating the initial M-E bond.