Journal of Physical Chemistry B, Vol.111, No.4, 841-852, 2007
Spin-forbidden ligand binding to the ferrous-heme group: Ab initio and DFT studies
The potential energy surfaces (PESs) and associated energy barriers that characterize the spin-forbidden recombination reactions of the gas-phase ferrous deoxy-heme group with CO, NO, and H2O ligands have been calculated using density functional theory (DFT). The bond energy for binding of O-2 has also been calculated. Extensive large basis set CCSD(T) calculations on two small models of the heme group have been used to calibrate the accuracy of different DFT functionals for treating these systems. Pure functionals are shown to overestimate the stability of the low-spin forms of the deoxy-heme model, and to overestimate the binding energy of H2O and CO, whereas hybrid functionals such as B3PW91 and B3LYP yield accurate results. Accordingly, the latter functionals have been used to explore the PESs for binding. CO binding is found to involve a significant barrier of ca. 3 kcal mol(-1) due to the need to change from the deoxy-heme quintet ground state to the bound singlet state. Binding of water does not involve a barrier, but the resulting bond is weak and may be further weakened in the protein environment, which should explain why water binding is not usually observed in heme proteins such as myoglobin. NO binding involves a low barrier, which is consistent with observed rapid geminate recombination. The calculated bond energies are in good agreement with previous reported values and in fair agreement with experiment for CO and O-2. The value for NO is significantly lower than the experimentally derived bond energy, suggesting that B3LYP is less accurate in this case.