화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.111, No.4, 767-777, 2007
Self-assembly of chemically linked rod-disc mesogenic liquid crystals
A series of new molecular discs (RDn, here n is the number of carbon atoms between the rod and disc mesogens) was synthesized via the chemical attachment of six cyanobiphenyl calamitic (rod) mesogens (R) linked to the triphenyl discotic (disc) mesogen (D) with a series of six alkyl chain linkages (n = 6-12). In this study, phase structures, transitions, and liquid crystalline (LC) behavior of the RD12 compound with 12 carbon atoms in each alkyl chain linkage between the rod and disc mesogens were investigated. Differential scanning calorimetry, polarized light microscopy, wide-angle X-ray diffraction (WAXD), and selected area electron diffraction (SAED) allowed us to identify three ordered phases below the isotropization temperature: nematic (N) LC and K-1 and K-2 crystalline phases. On the basis of the structural results obtained via 2D WAXD experiments on oriented samples and SAED experiments on single crystals, the K-1 crystalline unit cell was determined to be triclinic with the dimensions of a = 1.36 nm, b = 1.45 nm, c = 2.11 nm, alpha = 85 degrees, beta = 100 degrees, and gamma = 50 degrees. The K-2 phase was metastable with respect to the K-1 phase. It also possessed a triclinic unit cell with a = 1.40 nm, b = 1.51 nm, c = 1.92 nm, alpha = 87 degrees, beta = 117 degrees, and gamma = 62 degrees. Molecular packing models for the crystalline phases were proposed on the basis of the diffraction results. In the whole range of ordered structures, it was found that RD12 molecular discs are intercalated. Both triphenyl discotic mesogens and cyanobiphenyl calamitic mesogens are completely interdigitated.