Journal of Physical Chemistry A, Vol.111, No.5, 783-792, 2007
Quasiclassical trajectory study of the vibrational quenching of hydroxyl radicals through collision with O atoms
The collisional removal of vibrationally excited OH radicals by O atoms is studied by the quasiclassical trajectory method. To evaluate the effect of different topological features on the scattering processes two different global potential energy surfaces, DMBE IV and TU, are used. Results for reactive, exchange, and inelastic scattering probabilities are reported for central collisions (with zero total angular momentum) with a fixed relative translational energy for vibrational levels of OH ranging from nu = 1 to v = 8. Vibrational state distributions of product molecules are also compared on the two potential energy surfaces. Both surfaces predict higher probabilities for reaction than for exchange or inelastic scattering. The vibrational state distributions of the product diatomic molecules are different on the two surfaces. In particular, the two surfaces give substantially different probabilities for multiquantum OH vibrational relaxation transitions OH(v) + O -> OH(v') + O.