Journal of Physical Chemistry A, Vol.111, No.4, 552-557, 2007
Singlet excited-state dynamics of nitropolycyclic aromatic hydrocarbons: Direct measurements by femtosecond fluorescence up-conversion
Understanding the dynamics of the electronically excited states of nitrated polycyclic aromatic hydrocarbons (NPAHs) is of great importance since photochemical reactions determine the atmospheric stability of these toxic pollutants. From previous studies, it is known that electronically excited NPAHs evolve through two parallel pathways: The formation of the first triplet state and the dissociation of nitrogen (II) oxide. In this contribution, we present the first time-resolved emission measurements of the singlet excited states which are the precursors in the aforementioned photoprocesses. We analyzed 1-nitronaphthalene, 9-nitroanthracene, 1-nitropyrene, 6-nitrochrysene, and 3-nitrofluoranthene in solution samples. Although these compounds are considered nonfluorescent, with the frequency up-conversion method it was possible to detect the emission from the S-1 states despite their femtosecond and picosecond lifetimes. Except for 1-nitronapthalene, where a single exponential is observed, for the rest of the compounds, the emission shows double-exponential decays indicating ultrafast structural changes in the excited states. From anisotropy measurements, we conclude that no significant internal conversion occurs in the singlet manifold after excitation in the first absorption band. In accord with El-Sayed rules and with previous calculations, the highly efficient intersystem crossing implied by the large triplet yields and the ultrafast S-1 decays is accounted by the pi-pi* nature of the S-1 and T-1 states together with the existence of higher triplet configurations which act as receiver states. Our measurements show that NPAHs have the largest intersystem crossing rates observed to date in an organic molecule.