Thin Solid Films, Vol.515, No.3, 1038-1042, 2006
Electrochemical corrosion behavior of carbon-based thin films in chloride ions containing electrolytes
Commercially available carbon-based thin films consisting of single layers of amorphous diamond-like carbon or multilayers of crystalline TiAlN or CrN with diamond-like carbon top coatings were evaluated in relation to their electrochemical corrosion behavior in chloride ions containing electrolytes. The hardened working steel (an alloy of 0.9% C, 4.1% Cr, 4.9% Mo, 1.8% V, 6.4% W) was used as a substrate material. The potentiodynamic corrosion behavior of coated samples was tested in 3.5 wt.% NaCl solution and Hank's balanced body solution, HBBS (0.89 wt.% NaCl, further chlorides, sulfates, carbonates and phosphates). The multi-layers TiAlN+a-C:H:W and CrN+a-C:H:W exhibited only a minor improvement in corrosion resistance. Single layers of amorphous diamond-like carbon coating without hydrogen (a-C) spall off during the corrosion tests in chloride containing media. A minor improvement of the corrosion resistance is possible. The a-C:H and the a-C:H:Si, which contain hydrogen, showed the best corrosion resistance with a 100 times lower corrosion current density. (c) 2006 Elsevier B.V. All rights reserved.