화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.128, No.49, 15756-15764, 2006
Toward monodispersed silver nanoparticles with unusual thermal stability
A novel in situ autoreduction route has been developed, by which monodispersed silver nanoparticles with tunable sizes could be easily fabricated on silica-based materials, especially inside the channels of mesoporous silica (MPS). C-13 CP/MAS NMR spectroscopy was employed to monitor the whole assembly process. It was demonstrated that the amino groups of APTS (aminopropyltriethoxyl silane)modified MPS can be used to anchor formaldehyde to form novel reducing species (NHCH2OH), on which Ag(NH3)(2)NO3 could be in situ reduced. Monodispersed silver nanoparticles were thus obtained. In situ XRD and in situ TEM experiments were used to investigate and compare the thermal stabilities of silver nanoparticles on the external surface of silica gels (unconfined) and those located inside the channels of SBA-15 (confined). It was observed that unconfined silver nanoparticles tended to agglomerate at low temperatures (i.e., lower than 773 K). The aggregation of silver nanoparticles became more serious at 773 K. However, for those confined silver nanoparticles, no coarsening process was observed at 773 K, much higher than its Tammann temperature (i.e., 617 K). Only when the treating temperature was higher than 873 K could the agglomeration of those confined silver nanoparticles happen with time-varying via the Ostwald ripening process. The confinement of mesopores played a key role in improving the thermal stabilities of silver nanoparticles (stable up to 773 K without any observable coarsening), which is essential to the further investigations on their chemical (e.g., catalytic) properties.