화학공학소재연구정보센터
Polymer(Korea), Vol.31, No.2, 98-104, March, 2007
폴리스티렌/혼합용매 계에서 사슬의 팽창에 대한 새로운 스케일링 파라미터의 적용
Application of a New Scaling Parameter to Chain Expansion in the Systems of Polystyrene/Mixed Solvents
E-mail:
초록
다양한 분자량의 폴리스티렌을 벤젠/n-헵탄, 1,4-다이옥산/이소프로판올, 1,4-다이옥산/n-헵탄과 같은 3 종류의 혼합용매 계에 녹인 뒤 온도 상승에 따른 사슬의 팽창거동을 Flory Θ온도 이상에서 점성도법으로 측정하였다. 온도 상승에 따라 두 종류의 영역, 즉 고분자 사슬이 팽창하는 영역과 수축하는 영역으로 구별되며, 분자량이 클수록 최대팽창온도가 높게 나타났다. 하나의 혼합용매 계 내에서는 τ/τc 파라미터로 서로 다른 분자량의 사슬 팽창에 대하여 만능성이 나타나지만 서로 다른 혼합용매 계 사이에서는 각각의 기울기를 보임으로써 만능성이 관찰되지 않았다. 그러나 새로운 실험적 b2/3τ/τc 파라미터를 도입할 경우 모든 혼합용매 계의 사슬 팽창의 데이터들은 하나의 직선 위에 놓임으로써 만능성은 다시 회복되었다. 여기서 τ는 (T-Θ)/Θ로 τc는 (Θ-Tc)/Tc로 각각 정의되며, Tc는 임계용액온도를 의미하며, b는 Schultz-Flory 식에서 1/Tc의 1/Mw1/2에 대한 유효 기울기이다.
The expansion behavior of polystyrene(PS) chains with various molecular weights has been investigated above Flory Θtemperature by viscometry after dissolving in the three different mixed solvents systems such as benzene/n-heptane, 1,4-dioxane/isopropanol, and 1,4-dioxane/n-heptane. Two different regimes are observed as increasing temperature: one regime is for the expansion of chain and the other is for the contraction. For the higher molecular weight sample of PS, the higher peak temperature showing its maximum expansion is obtained. Within a certain system of PS/mixed solvents, the τ/τc parameter shows universality for the variation of molecular weight. But while each system of PS/mixed solvents has shown its own different slope, the universality breaks down in the overall system of mixed solvents. However after introducing a new empirical b2/3τ/τc parameter, all data points of three different systems have dropt on one master curve and the universality of chain expansion has recovered again. Here τ and τc are defined as (T-Θ)/Θand (Θ-Tc)/Tc, respectively and Tc is the critical solution temperature, and b of Schultz-Flory equation is corresponding to the effective slope in the plot of 1/Tc against 1/Mw1/2.
  1. Flory JP, Principles of Polymer Chemistry, Cornell University, Ithaca, NY (1953)
  2. Yamakawa H, Modern Theory of Polymer Solutions, Harper & Row, New York (1971)
  3. de Gennes PG, Scaling Concepts in Polymer Physics, Cornell University, Ithaca, NY (1979)
  4. Park IH, Kim JH, Chang T, Macromolecules, 25, 7300 (1992)
  5. Park IH, Macromolecules, 27(19), 5517 (1994)
  6. Park IH, Macromolecules, 31(9), 3142 (1998)
  7. Park IH, Kim MJ, Polym.(Korea), 22(1), 121 (1998)
  8. Park IH, Kim YC, Yun L, Polym.(Korea), 27(3), 255 (2003)
  9. de Gennes PG, J. Phys. Lett., 36, L55 (1975)
  10. de Gennes PG, J. Phys. Lett., 39, L299 (1978)
  11. Sanchez IC, Macromolecules, 12, 980 (1979)
  12. Sanchez IC, Macromolecules, 17, 967 (1984)
  13. Farmoux B, Boue F, Cotton JP, Daoud M, Jannink G, Nierlich M, de Gennes PG, J. Phys. Fr., 39, 77 (1978)
  14. Ackasu AZ, Han CC, Macromolecules, 12, 276 (1979)
  15. Ackasu AZ, Benmouna M, Alkhafaji S, Macromolecules, 14, 147 (1981)
  16. Francois J, Schwartz T, Weill G, Macromolecules, 13, 564 (1980)
  17. Oono Y, Konomoto M, J. Chem. Phys., 78, 520 (1983)
  18. Douglas JF, Freed KF, Macromolecules, 17, 2344 (1984)
  19. Douglas JF, Freed KF, Macromolecules, 17, 1854 (1984)
  20. Douglas JF, Freed KF, Macromolecules, 17, 2354 (1984)
  21. Douglas JF, Roovers J, Freed KF, Macromolecules, 23, 4168 (1990)
  22. Dondos A, Polymer, 33, 4375 (1992)
  23. Dondos A, Macromolecules, 26, 3966 (1993)
  24. Chu B, Wang Z, Park IH, Tontixakis A, Rev. Sci. Instrum., 60, 1303 (1989)
  25. Chu B, Wang Z, Macromolecules, 21, 2283 (1988)
  26. Chu B, Wang Z, Macromolecules, 22, 380 (1989)