화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.13, No.1, 153-158, January, 2007
High Cell Density Fermentation of Saccharomyces cerevisiae JUL3 in Fed-batch Culture for the Production of β-Glucan
E-mail:
β-Glucan is a cell wall component that is one of the most plentiful cell polysaccharides. Moreover, it has been found to have several beneficial effects on the immune system. In yeast, β-glucan is mainly contained in the yeast cell wall, and thus it is important to produce high levels of cell mass for the mass production of yeast β-glucan. Response surface methodology (RSM) offers a potential means of optimizing process factors and medium components; it has been used to estimate the effects of medium components on cell mass production. In the present study, the optimal concentrations of molasses and corn steep liquor (CSL) in the medium were determined to be 6.4 % (v/v) and 17 % (v/v). The cell mass predicted by statistical analysis was 9.76 g/L after 20 h of cultivation. In a 2.5-L stirred tank reactor (STR), the cell mass produced in a batch culture was 36.5∼ 39.3 g/L. The maximum cell mass in the fed-batch cultures of Saccharomyces cerevisiae JUL3 was 95.7 g/L using 50 % molasses solution and a feed rate of 10 mL/h. The cell mass obtained in the fed-batch culture was 2.4-fold higher than that obtained in the batch culture.
  1. Manners DJ, Masson AJ, Patterson JC, Biochem. J., 135, 31 (1973)
  2. Kang R, Lee KY, Lee EK, Korean J. Biotechnol. Bioeng., 16, 409 (2001)
  3. Vetvicka V, JAMA, 3, 31 (2001)
  4. Kim HN, Lee JN, Kim GE, Kim CW, Sohn JW, J. Microbiol. Biotechnol., 9, 826 (1999)
  5. Kernoddle DS, Gates H, Kaiser AB, Antimicrob. Agents Chemother., 42, 545 (1998)
  6. Cleary JA, Kelly GE, Husband AJ, Immun. Cell Biol., 77, 395 (1999)
  7. Vetvicka V, Yvin JC, Int. Immunopharmacol., 4, 721 (2004)
  8. Babincova M, Bacova Z, Machova E, Kogan G, J. Med. Food, 5, 79 (2002)
  9. Krizkova L, Durackova Z, Sandula J, Slamenova D, Sasinkova V, Sivonova M, Krajcovic J, Anticancer Res., 23, 2751 (2003)
  10. Sener G, Sehirli AO, Ipci Y, Cetinel S, Cikler E, Gedik N, Alican I, Fundam. Clin. Pharmacol., 19, 155 (2005)
  11. Brown GD, Gordon S, Immun., 19, 311 (2003)
  12. Lim JS, Park MC, Lee JH, Park SW, Kim SW, Eur. Food Res. Technol., 221, 639 (2005)
  13. Kharel MK, Lee HC, Sohng JK, Liou K, J. Ind. Eng. Chem., 8(5), 427 (2002)
  14. Kim SJ, Kim GJ, Park DH, Ryu YW, J. Microbiol. Biotechnol., 13, 175 (2003)
  15. El-sayed AMM, Mahmoud WM, Coughlin RW, Biotechnol. Bioeng., 36, 338 (1990)
  16. Mohagheghi A, GrohmannK K, Wyman E, Biotechnol. Bioeng., 35, 211 (1990)
  17. Mo MJ, Kim SU, Shin HY, Im DS, Jung IH, Ko JS, Lee WK, J. Ind. Eng. Chem., 11(4), 507 (2005)
  18. Ha CH, Lim KH, Kim YT, Lim ST, Kim CW, Chang HI, Appl. Microbiol. Biotechnol., 58(3), 370 (2002)
  19. www.megazyme.com
  20. Kapat A, Jung JK, Park YH, Biotechnol. Lett., 20, 683 (1997)
  21. Shang F, Wen S, Wang X, Tan T, J. Biosci. Bioeng., 101, 38 (2006)
  22. Calado CRC, Almeida C, Cabral JMS, Fonseca LP, J. Biosci. Bioeng., 96(2), 141 (2003)
  23. Kim JS, Kim H, Oh KK, Kim YS, J. Ind. Eng. Chem., 8(6), 519 (2002)
  24. Lee PC, Lee WG, Lee SY, Chang HN, Chang YK, Biotechnol. Bioprocess Eng., 5, 379 (2000)
  25. Echegaray OF, Carvalho JCM, Fernandes ANR, Sato S, Aquarone E, Vitolo M, Biomass Bioenerg., 19(1), 39 (2000)
  26. Kim JS, Kim H, Oh KK, Kim YS, J. Ind. Eng. Chem., 8(6), 519 (2002)
  27. McMurrough I, Rose AH, J. Biochem., 105, 189 (1967)
  28. Catley BJ, Isolation and analysis of cell walls, Oxford University Press, 163 (1988)
  29. Pavlova K, Grigorova D, Food Res. Int., 32, 473 (1999)
  30. Kim KS, Yun HS, Enzyme Microb. Technol., 39(3), 496 (2006)