화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.13, No.1, 92-96, January, 2007
Synthesis and Characterization of Nanocrystalline LiTiO2 Using a One-Step Hydrothermal Method
E-mail:
Nanocrystalline LiTiO2 was synthesized using a one-step hydrothermal method. XRD and SAED patterns of the samples both confirmed the formation of rock salt-type LiTiO2 with a lattice constant of a = 4.14Å. A TEM image of the sample shows very clear nanocrystalline LiTiO2 with an average particle size of 36.5nm and a standard deviation of 8.0 nm. An FT-IR spectrum of the LiTiO2 confirms the absorption of CO2 molecules on the surface of the samples. A UV-vis diffuse reflectance spectrum of the sample shows a blue shift of 28 nm compared with P25 (TiO2) and a Raman spectrum of the LiTiO2 displays the seven characteristic allowed bands at 158, 193, 245, 430, 688, 865, and 1090 cm-1. The nanocrystalline LiTiO2 can be used as an anode electrode material for Li-ion batteries.
  1. Ra WY, Nakayama M, Uchimoto Y, Wakihara M, J. Phys. Chem. B, 109(3), 1130 (2005)
  2. Jiang K, Hu X, Sun H, Wang D, Jin X, Ren Y, Chen GZ, Chem. Mater., 16, 4324 (2004)
  3. Kuhn A, Amandi R, Garcia-Alvarado F, J. Power Sources, 92(1-2), 221 (2001)
  4. Ohzuku T, Ueda A, Yamamoto N, J. Electrochem. Soc., 142(5), 1431 (1995)
  5. Ferg E, Gummow RJ, Dekock A, Thackeray MM, J. Electrochem. Soc., 141(11), L147 (1994)
  6. Moon SH, Jin WJ, Kim TR, Hahm HS, Cho BW, Kim MS, J. Ind. Eng. Chem., 11(4), 594 (2005)
  7. Koudriachova MV, Harrison NM, de Leeuw SW, Solid State Ion., 152, 189 (2002)
  8. Milman, Properties of Complex Inorganic Solids, Proc. 1st International Alloy Conference, p. 19 Plenum, Athens (1997)
  9. Stashans A, Lunell S, Bergstrom R, Hagfeldt A, Lindquist SE, Phys. Rev. B, 53, 159 (1996)
  10. Ueda Y, Tanaka T, Kosuge K, J. Solid State Chem., 77, 401 (1988)
  11. Xu F, Liao YC, Wang MJ, Wu CT, Chiu KF, Wu MK, J. Low Temp. Phys., 131, 569 (2003)
  12. Fattakhova D, Krtil P, J. Electrochem. Soc., 149(9), A1224 (2002)
  13. Sides CR, Martin CR, Adv. Mater., 17, 125 (2005)
  14. Kavan L, Kalbac M, Zukalova M, Exnar I, Lorenzen V, Nesper R, Graetzel M, Chem. Mater., 16, 477 (2004)
  15. Gallardo-Amores JM, Armaroli T, Ramis G, Finocchio E, Busca G, Appl. Catal. B: Environ., 22(4), 249 (1999)
  16. Dvoranova D, Brezova V, Mazur M, Malati MA, Appl. Catal. B: Environ., 37(2), 91 (2002)
  17. Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima EA, Kitamura A, Shimohi-goshi M, Watanabe T, Adv. Mater., 10, 135 (1998)
  18. Yu JC, Zhang L, Zheng Z, Zhao J, Chem. Mater., 15, 2280 (2003)
  19. Cozzoli PD, Kornowski A, Weller H, J. Am. Chem. Soc., 125(47), 14539 (2003)
  20. Pasierb P, Komornicki S, Rokita M, Rekas M, J. Mol. Struct., 596, 151 (2001)
  21. Aldon L, Kubiak P, Womes M, Jumas JC, Olivier-Fourcade J, Tirado JL, Corredor JI, Vicente CP, Chem. Mater., 16, 5721 (2004)
  22. Nakazawa T, Grismanovs V, Yamaki D, Katano Y, Aruga T, Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 206, 166 (2003)
  23. Parker JC, Siegel RW, Appl. Phys. Lett., 57, 943 (1990)
  24. Lee MH, Choi BC, J. Am. Ceram. Soc., 74, 2309 (1991)
  25. Bersani D, Lottici PP, Ding XZ, Appl. Phys. Lett., 72, 73 (1998)