Journal of Industrial and Engineering Chemistry, Vol.13, No.1, 92-96, January, 2007
Synthesis and Characterization of Nanocrystalline LiTiO2 Using a One-Step Hydrothermal Method
E-mail:
Nanocrystalline LiTiO2 was synthesized using a one-step hydrothermal method. XRD and SAED patterns of the samples both confirmed the formation of rock salt-type LiTiO2 with a lattice constant of a = 4.14Å. A TEM image of the sample shows very clear nanocrystalline LiTiO2 with an average particle size of 36.5nm and a standard deviation of 8.0 nm. An FT-IR spectrum of the LiTiO2 confirms the absorption of CO2 molecules on the surface of the samples. A UV-vis diffuse reflectance spectrum of the sample shows a blue shift of 28 nm compared with P25 (TiO2) and a Raman spectrum of the LiTiO2 displays the seven characteristic allowed bands at 158, 193, 245, 430, 688, 865, and 1090 cm-1. The nanocrystalline LiTiO2 can be used as an anode electrode material for Li-ion batteries.
- Ra WY, Nakayama M, Uchimoto Y, Wakihara M, J. Phys. Chem. B, 109(3), 1130 (2005)
- Jiang K, Hu X, Sun H, Wang D, Jin X, Ren Y, Chen GZ, Chem. Mater., 16, 4324 (2004)
- Kuhn A, Amandi R, Garcia-Alvarado F, J. Power Sources, 92(1-2), 221 (2001)
- Ohzuku T, Ueda A, Yamamoto N, J. Electrochem. Soc., 142(5), 1431 (1995)
- Ferg E, Gummow RJ, Dekock A, Thackeray MM, J. Electrochem. Soc., 141(11), L147 (1994)
- Moon SH, Jin WJ, Kim TR, Hahm HS, Cho BW, Kim MS, J. Ind. Eng. Chem., 11(4), 594 (2005)
- Koudriachova MV, Harrison NM, de Leeuw SW, Solid State Ion., 152, 189 (2002)
- Milman, Properties of Complex Inorganic Solids, Proc. 1st International Alloy Conference, p. 19 Plenum, Athens (1997)
- Stashans A, Lunell S, Bergstrom R, Hagfeldt A, Lindquist SE, Phys. Rev. B, 53, 159 (1996)
- Ueda Y, Tanaka T, Kosuge K, J. Solid State Chem., 77, 401 (1988)
- Xu F, Liao YC, Wang MJ, Wu CT, Chiu KF, Wu MK, J. Low Temp. Phys., 131, 569 (2003)
- Fattakhova D, Krtil P, J. Electrochem. Soc., 149(9), A1224 (2002)
- Sides CR, Martin CR, Adv. Mater., 17, 125 (2005)
- Kavan L, Kalbac M, Zukalova M, Exnar I, Lorenzen V, Nesper R, Graetzel M, Chem. Mater., 16, 477 (2004)
- Gallardo-Amores JM, Armaroli T, Ramis G, Finocchio E, Busca G, Appl. Catal. B: Environ., 22(4), 249 (1999)
- Dvoranova D, Brezova V, Mazur M, Malati MA, Appl. Catal. B: Environ., 37(2), 91 (2002)
- Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima EA, Kitamura A, Shimohi-goshi M, Watanabe T, Adv. Mater., 10, 135 (1998)
- Yu JC, Zhang L, Zheng Z, Zhao J, Chem. Mater., 15, 2280 (2003)
- Cozzoli PD, Kornowski A, Weller H, J. Am. Chem. Soc., 125(47), 14539 (2003)
- Pasierb P, Komornicki S, Rokita M, Rekas M, J. Mol. Struct., 596, 151 (2001)
- Aldon L, Kubiak P, Womes M, Jumas JC, Olivier-Fourcade J, Tirado JL, Corredor JI, Vicente CP, Chem. Mater., 16, 5721 (2004)
- Nakazawa T, Grismanovs V, Yamaki D, Katano Y, Aruga T, Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 206, 166 (2003)
- Parker JC, Siegel RW, Appl. Phys. Lett., 57, 943 (1990)
- Lee MH, Choi BC, J. Am. Ceram. Soc., 74, 2309 (1991)
- Bersani D, Lottici PP, Ding XZ, Appl. Phys. Lett., 72, 73 (1998)