화학공학소재연구정보센터
Journal of Power Sources, Vol.161, No.1, 492-502, 2006
Steady state and dynamic performance of proton exchange membrane fuel cells (PEMFCs) under various operating conditions and load changes
The steady-state performance and transient response for H-2/air polymer electrolyte membrane (PEM) fuel cells are investigated in both single fuel cell and stack configurations under a variety of loading cycles and operating conditions. Detailed experimental parameters are controlled and measured under widely varying operating conditions. In addition to polarization curves, feed gas flow rates, temperatures, pressure drop, and relative humidity are measured. Performance of fuel cells was studied using steady-state polarization curves, transient I-V response and electrochemical impedance spectroscopy (EIS) techniques. Different feed gas humidity, operating temperature, feed gas stoichiometry, air pressure, fuel cell size and gas flow patterns were found to affect both the steady state and dynamic response of the fuel cells. It was found that the humidity of cathode inlet gas had a significant effect on fuel cell performance. The experimental results showed that a decrease in the cathode humidity has a detrimental effect on fuel cell steady state and dynamic performance. Temperature was also found to have a significant effect on the fuel cell performance through its effect on membrane conductivity and water transport in the gas diffusion layer (GDL) and catalyst layer. The polarization curves of the fuel cell at different operating temperatures showed that fuel cell performance was improved with increasing temperature from 65 to 75 degrees C. The air stoichiometric flow rate also influenced the performance of the fuel cell directly by supplying oxygen and indirectly by influencing the humidity of the membrane and water flooding in cathode side. The fuel cell steady state and dynamic performance also improved as the operating pressure was increased from 1 to 4 atm. Based on the experimental results, both the steady state and dynamic response of the fuel cells (stack) were analyzed. These experimental data will provide a baseline for validation of fuel cell models. (c) 2006 Elsevier B.V. All rights reserved.