Journal of Physical Chemistry B, Vol.110, No.41, 20445-20450, 2006
Diffusion dynamics of the Li atom on amorphous carbon: A direct molecular orbital-molecular dynamics study
Direct molecular orbital-molecular dynamics (MO-MD) calculation was applied to diffusion processes of the Li atom on a model surface of amorphous carbon and compared with the diffusion mechanism of Li+ ion. A carbon sheet composed of C96H24 was used as the model surface. The total energy and energy gradient on the full dimensional potential energy surface of the LiC96H24 system were calculated at each time step in the trajectory calculation. The optimized structure, where the Li atom is located at the center of mass of the model surface, was used as the initial structure at time zero. Simulation temperatures were chosen in the range of 200-1250 K. The dynamics calculations showed that the Li atom vibrates around the initial position below 250 K, and it moves above 300 K. At middle temperature, the Li atom translates freely on the surface. At higher temperature (1000 K), the Li atom moves from the center to edge region of the model surface and is trapped in the edge. The activation energy calculated for the Li atom is larger than that for the Li+ ion. This difference is due to the fact that the Li atom diffuses together with an unpaired electron on the carbon surface. The diffusion mechanism of the Li atom was discussed on the basis of the theoretical results.