화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.304, No.1, 84-91, 2006
Controlled synthesis of highly dispersed TiO2 nanoparticles using SBA-15 as hard template
Highly dispersed TiO2 nanoparticles were successfully synthesized by a wet impregnation method using SBA-15 as hard template for confining the growth of TiO2 nanocrystals, and then calcined at 550 degrees C in muffle furnace for 2 h. The as-synthesized samples were characterized with Fourier transform infrared spectra (FTIR), Raman spectroscopy, diffuse reflectance UV-visible spectroscopy (UV-vis), powder X-ray diffraction (XRD), small-angle X-ray diffraction (SAXRD), nitrogen adsorption, transmission electron microscopy (TEM) and photoluminescence spectra (PL). It was found that SBA-15 contained abundant silanol groups after removal of triblock copolymers by ethanol extraction and could easily adsorb a great number of titanium alkoxide via chemisorption. After subsequent hydrolysis of the anchored Ti complexes and calcination of the amorphous TiO2, anatase TiO2 nanocrystals with spherical shape and uniform particle diameter of about 6 nm were formed. A blue shift was observed in UV-vis absorption spectra due to the quantum size effect of TiO2 nanoparticles. Moreover, the as-prepared TiO2 nanoparticles showed a high PL intensity due to an increase in the recombination rate of photogenerated electrons and holes under UV light irradiation. (c) 2006 Elsevier Inc. All rights reserved.