화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.303, No.2, 573-578, 2006
Synthesis and electrorheological behavior of sterically stabilized polypyrrole-silica-methylcellulose nanocomposite suspension
Various polypyrrole (PPy)-silica-methylcellulose nanocomposite particles were synthesized by suspension polymerization in the presence of silica nanoparticles controlling the ratio of pyrrole, silica, and methylcellulose during the polymerization. The electrorheological (ER) and dielectric properties of the sterically stabilized PPy-silica-methylcellulose nanocomposite suspensions were investigated. The ER response increases with the increase in the silica/pyrrole ratio. The ER behavior also depends on the methylcellulose amount during the polymerization. The yield stress initially increases with the methylcellulose amount, passes through a maximum, and then decreases with the methylcellulose amount. The dielectric constants and de conductivities of the PPy-silica-methylcellulose nanocomposite particles and the dielectric properties of their suspensions indicate that the increased ER response arises from the enhanced interfacial and particle polarization which depends on the silica/pyrrole ratio and the methylcellulose amount during the polymerization. (c) 2006 Elsevier Inc. All rights reserved.