Journal of Physical Chemistry B, Vol.110, No.37, 18447-18454, 2006
Cation migration upon adsorption of methanol in NaY and NaX faujasite systems: A molecular dynamics approach
Molecular dynamics simulations have been carried out to address the question of cation migration upon adsorption of methanol in NaY and NaX faujasite systems as a function of the loading. For NaY, it has been shown that, at low and intermediate loadings, SII cations can migrate toward the center of the supercage due to strong interactions with the adsorbates, followed by a hopping of SI' from the sodalite cage into the supercage to fill the vacant SII site. A SI' cation can also migrate across the double six ring and takes a SI' vacant position. SI cations mainly remain trapped in their initial sites whatever the loading. At high loading, only limited motions are observed for SII cations due to steric effects induced by the presence of adsorbates within the supercage. For NaX, the SIII' cations which occupy the most accessible adsorption sites are significantly moving upon coordination to the methanol molecules; the extent of this mobility exhibits a maximum for 48 methanol molecules per unit cell before decreasing at higher loadings due to steric hindrance. In addition, the SI' and SII cations remain almost trapped in their initial sites whatever the loading. Indeed, the most probable migration mechanism involves SIII' cation displacements into nearby SIII' sites.