화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.110, No.40, 11404-11410, 2006
Time-dependent radiolytic yields of the solvated electrons in 1,2-ethanediol, 1,2-propanediol, and 1,3-propanediol from picosecond to microsecond
The absorption spectra of the solvated electron in 1,2-ethanediol (12ED), 1,2-propanediol (12PD), and 1,3-propanediol (13PD) have been determined by nanosecond pulse radiolysis techniques. The maximum of the absorption band located at 570, 565, and 575 nm for these three solvents, respectively. With 4,4'-bipyridine (44Bpy) as a scavenger, the molar extinction coefficients at the absorption maximum of the solvated electron spectrum have been evaluated to be 900, 970, and 1000 mol(-1) m(2) for 12ED, 12PD, and 13PD, respectively. These values are two-thirds or three-fourths of the value usually reported in the literature. With these extinction coefficients, picosecond pulse radiolysis studies have allowed us to depict the radiolytic yield of the solvated electron in these solvents as a function of time from picosecond to microsecond. The radiolytic yield in these viscous solvents is found to be strongly different from that of water solution.