화학공학소재연구정보센터
Combustion Science and Technology, Vol.178, No.12, 2199-2218, 2006
Experimental and numerical investigation of transient soot buildup on a cylindrical container immersed in a jet fuel pool fire
Soot buildup and its effects on heat transfer have been investigated as part of an effort to understand the thermal response of containers of high-energy materials immersed in fires. Soot deposition rates were measured for cooled and uncooled cylindrical containers immersed in a jet fuel pool fire. The soot buildup was measured at different time intervals with a wet film gage with an uncertainty of 20%. These rates were compared with those calculated by solving the boundary layer equations along the cylinder surface including the thermophoretic transport of soot particles. Thermophoresis was the dominant soot transport mechanism controlling the deposition of soot on the container wall and gave deposition rates in good agreement with the measured values. The soot buildup was found to have an important insulating effect on the heat transfer to the container. A soot deposit thickness of 1.2 mm resulted in as much as a 35% reduction in heat flux.