- Previous Article
- Next Article
- Table of Contents
Journal of Physical Chemistry B, Vol.110, No.33, 16159-16161, 2006
Fast electron transport in metal organic vapor deposition grown dye-sensitized ZnO nanorod solar cells
The electron transport in dye-sensitized solar cells with a MOCVD (metal organic vapor deposition)-grown ZnO nanorod array (ZnO-N) or a mesoporous film prepared from ZnO colloids (ZnO-C) as the working electrode was compared. The electrodes were of similar thickness (2 Am) and sensitized with zinc(II) mesotetrakis(3-carboxyphenyl) porphyrin, while the electrolyte was I-/I-3-in 3-methoxypropionitrile. Electron transport in the ZnO-C cells was comparable with that found for colloidal TiO2 films (transport time similar to 10 ms) and was light intensity dependent. Electron transport in solar cells with ZnO-N electrodes was about 2 orders of magnitude faster (similar to 30 mu s). Thus, the morphology of the working ZnO electrode plays a key role for the electron transport properties.