Journal of Physical Chemistry A, Vol.110, No.31, 9555-9567, 2006
Vibrational energy relaxation of polyatomic molecules in liquid solution via the linearized semiclassical method
Vibrational energy relaxation (VER) of polyatomic, as opposed to diatomic, molecules can occur via different, often solvent assisted, intramolecular and/or intermolecular pathways. In this paper, we apply the linearized semiclassical (LSC) method for calculating VER rates in the prototypical case of a rigid, symmetrical and linear triatomic molecule (A-B-A) in a monatomic liquid. Starting at the first excited state of either the symmetric or asymmetric stretches, VER can occur either directly to the ground state or indirectly via intramolecular vibrational relaxation (IVR). The VER rate constants for the various pathways are calculated within the framework of the Landau-Teller formalism, where they are expressed in terms of two-time quantum-mechanical correlation functions. The latter are calculated by the LHA-LSC method, which puts them in a "Wignerized" form, and employs a local harmonic approximation (LHA) in order to compute the necessary multidimensional Wigner integrals. Results are reported for the LHL/Ar model of Deng and Stratt [J. Chem. Phys. 2002, 117, 1735], as well as for CO2 in liquid argon and in liquid neon. The LHA-LSC method is shown to give rise to significantly faster VER and IVR rates in comparison to the classical treatment, particularly at lower temperatures. We also find that the type and extent of the quantum rate enhancement is strongly dependent on the particular VER pathway. Finally, we find that the classical and semiclassical treatments can give rise to opposite trends when it comes to the dependence of the VER rates on the solvent.