Journal of Membrane Science, Vol.280, No.1-2, 659-665, 2006
Effect of substituents on the permeation properties of polyamide membranes
Aromatic polyamides, designed for evaluation as gas separation membranes, were processed into dense films, whose properties were measured with special emphasis on their mechanical and thermal properties. The polymers had been synthesized from monomers bearing side substituents, such as methyl, iso-propyl or tert-butyl, and various hinge-like connecting linkages of p-phenylene moieties, which yielded amorphous aromatic polyamides, with improved solubility, high glass transition temperatures (over 250 degrees C) and excellent mechanical properties (tensile strength about 100 MPa, and moduli about 2.0 GPa). The permeability of the polymer films were investigated using helium, oxygen, nitrogen, carbon dioxide and methane. Gas permeability typically increased with increasing free volume, and, in general, free volume could be related to the chemical structure. The analysis of the transport parameters (permeability, diffusivity and solubility coefficients) as a function of the chemical structure, confirmed the predominant role of the side substituents and of the linking groups connecting phenylene units on the permeation properties. Besides, a molecular modelling study carried out via computational chemistry, made it clear that an acceptable theoretical explanation can be given of how the nature of hinge groups between aromatic rings can affect torsional mobility and gas diffusion of aromatic polyamides. The experimental aromatic polyamides of this report, as a whole, showed a favourable combination of permeability-selectivity, better than that of conventional polyamides and that of most engineering thermoplastics, confirming the hypothesis that the incorporation of side bulky substituents is a convenient approach to hinder the inherently efficient chain packing of polyamides. (c) 2006 Elsevier B.V. All rights reserved.