Applied Microbiology and Biotechnology, Vol.71, No.2, 168-176, 2006
Active-site engineering of biphenyl dioxygenase: effect of substituted amino acids on substrate specificity and regiospecificity
Biphenyl dioxygenase (Bph Dox) catalyzes the initial dioxygenation step in the metabolism of biphenyl. The large subunit (BphA I) of Bph Dox plays a crucial role in the determination of the substrate specificity of biphenyl-related compounds including polychlorinated biphenyls (PCBs). Previously, the substitution of Asn at Thr-376 near the active-site iron in the BphA1 of Pseudomonas pseudoalcaligenes KF707 expanded the oxidation range and altered the regiospecificity of Bph Dox for PCBs. In this study, we replaced Thr-376 with Gly, Ser, Gln, Tyr, Val, Phe, Asp, and Lys and expressed these-enzymes in Escherichia coli. Bph Dox mutants of Thr376Asn, Thr376Val, Thr376Phe, and Thr376Lys showed novel degradation activity for dibenzofuran, which is a poor substrate for KF707 Bph Dox. All active Bph Dox mutants showed altered regiospecificity with 2,2'-dichlorobiphenyl and 2,5,4'-trichlorobiphenyl. The Thr376Gly, Thr376Val, Thr376Phe, and Thr376Asp Bph Dox mutants introduced molecular oxygen at the 2,3 position of 2,2'-dichlorobiphenyl, forming 2-chloro-2',3'-dihydroxybiphenyl with concomitant dechlorination. The Bph Dox mutants of Thr376Gly, Thr376Ser, Thr376Asp, and Thr376Lys attacked 2,5,4'-trichlorobiphenyl via both 2',3'- and 3,4-dioxygenation activities. In particular, the Thr376Phe Bph Dox mutant exhibited enhanced and expanded degradation activities toward all of the compounds tested. Further site-directed mutation was induced to change the oxidizing character of KF707 Bph Dox to that of the Bph Dox of Burkholderia xenovorans LB400 by the substitution of two amino acids, Ile335Phe and Thr376Asn, near the active-site.