화학공학소재연구정보센터
Polymer, Vol.47, No.14, 5187-5195, 2006
A molecular thermodynamic model for binary lattice polymer solutions
A molecular thermodynamic model for binary lattice polymer solutions with concise and accurate expressions for the Helmholtz energy of mixing and other thermodynamic properties is established. Computer simulation results are combined with the statistical mechanics to obtain the expressions. Yan et al.'s model for Ising lattice and the sticky-point model of Cumming, Zhou and Stell are incorporated in the derivation. Besides the nearest neighbor cavity correlation function obtained from the Ising lattice, the long range correlations beyond the close contact pairs are represented by a parameter gamma, the linear chain-length dependence of which is obtained by fitting the simulated critical parameters of two systems with chain lengths of 4 and 200. The predicted critical temperatures and critical compositions, spinodals and coexistence curves as well as internal energies of mixing for systems with various chain lengths are in satisfactory agreement in comparison with the computer simulation results and experimental data indicating the superiority of the model over other theories. The model can serve as a basis to develop more efficient models for practical applications. (c) 2006 Elsevier Ltd. All rights reserved.