Polymer, Vol.47, No.14, 5050-5065, 2006
Softening and melting mechanisms of polyamides interfering with sliding stability under adhesive conditions
The thermal stability of polymers is a main issue when used as friction elements under dry sliding. Cast polyamide grades processed with either natrium or magnesium catalysors are slid on a small-scale and a large-scale test configuration to reveal the effect of softening or degradation on the sliding stability and to investigate possibilities for extrapolation of friction and wear rates between both testing scales. The combination of softening and afterwards transition into the glassy state is detrimental for the sliding stability of natrium catalysed polyamides, characterised by heavy noise during sliding. A transfer film formed under continuous softening also provides high friction. Melting during initial sliding is necessary for stabilisation in both friction and wear, and eventual softening of a molten film near the end of the test then not deteriorates the sliding stability. Softening of magnesium catalysed polyamides is favourable for the formation of a coherent transfer film resulting in more stable sliding than natrium catalysed polyamides. The differences in softening mechanisms of both polyamide grades is correlated to structural changes investigated by thermal analysis and Raman spectroscopy: the gamma crystalline structure prevails in magnesium catalysed samples and the a crystalline structure is predominant in natrium catalysed samples. For internal oil lubricated polyamides, a time dependent degradation of the polyamide bulk deteriorates the supply of internal oil lubricant to the sliding interface, resulting in high friction and wear under overload conditions. As the degradation mechanisms during sliding are strongly correlated to the test set-up, extrapolation is only possible for friction in a limited application range, while wear rates cannot be extrapolated. (c) 2006 Elsevier Ltd. All rights reserved.