화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.128, No.30, 9705-9710, 2006
Au- and Pt-catalyzed cycloisomerizations of 1,5-enynes to cyclohexadienes with a broad alkyne scope
We describe the development of gold- and platinum-catalyzed cycloisomerizations of 1,5-enynes. This catalytic process displays a wide alkyne scope and furnishes a range of highly functionalized 1,4-and 1,3-cyclohexadienes. In the case of 1-siloxy-1-yne-5-enes, the reactions are efficiently catalyzed by AuCl (1 mol %) at ambient temperature to afford siloxy cyclohexadienes or the corresponding 1,2-and 1,3-cyclohexenones upon subsequent protodesilylation. We propose that the reaction proceeds via a novel mechanism involving a series of 1,2-alkyl shifts. Elucidation of this unusual reaction mechanism enabled us, in turn, to significantly expand the scope of the cycloisomerization by incorporation of a quaternary center at the C(3) position of the enyne. Indeed, we established that PtCl2 (5 mol %) efficiently catalyzed the cycloisomerizations of 1,5-enynes containing terminal, internal, and arene-conjugated alkynes. Since a variety of 1,5-enynes are readily accessible, the cycloisomerization provides a rapid approach to a wide range of highy substituted cyclohexadienes for many subsequent synthetic applications.