Journal of Chemical Technology and Biotechnology, Vol.81, No.8, 1331-1337, 2006
Treatment of Fenton-refractory olive oil mill wastes by electrochemical oxidation with boron-doped diamond anodes
In this work, the electrochemical oxidation of an actual industrial waste with conductive diamond anodes has been studied. The wastewater is the effluent of a wastewater treatment plant consisting of a Fenton reactor followed by a settler and a sand filter, in which the wastes generated in an olive oil mill are treated. These wastes contain a residual chemical oxygen demand of nearly 700 mg dm(-3) which cannot be further oxidized with the Fenton process. The electrolyses were carried out under galvanostatic conditions, using a bench-scale plant equipped with a single-compartment electrochemical flow cell. Boron-doped diamond (BDD) and stainless steel (AISI 304) were use as anode and cathode of the cell, respectively. The complete mineralization of the waste was obtained with high current efficiencies limited only by mass transport processes. This confirms that besides the hydroxyl radical-mediated oxidation that occurs in the Fenton process, the electrochemical oxidation with conductive diamond electrodes combines other important oxidation processes such as direct electro-oxidation on the BDD surface and oxidation mediated by other electrochemically formed compounds generated in this electrode. (c) 2006 Society of Chemical Industry.