Polymer, Vol.45, No.4, 1235-1242, 2004
Step-scan alternating DSC study of melting and crystallisation in poly(ethylene oxide)
Step-scan alternating differential scanning calorimetry (SSA-DSC) method was applied to investigate the phase behaviour of well-characterised poly(ethylene oxide) (PEO). Influence of the three main measurement's parameters of SSA-DSC method: length of the isothermal segment (t(iso)/s), temperature jump between two subsequent isothermal segments (step/deg) and linear heating rate in dynamic segments (b/K/min), on the shape of reversing and non-reversing components during the melting and crystallisation of PEO, has been evaluated. It was found that the reversing component during melting of PEO is increasing with an increase of the isothermal segment length. This effect is due to the existence of defected polymer crystal structures that form metastable regions between crystal phase and already melted polymer. Reversible recrystallisation in the presence of still existing polymer crystals is facilitated by longer isothermal segments. By increasing the step, the equilibrium of reversible processes is shifted towards products and activation of rate-controlled processes takes place; molecular nucleation is hampered and partial melting and/or recrystallisation proceed slower-this effect can be observed as a decrease of reversing signal with increasing step. (C) 2003 Elsevier Ltd. All rights reserved.