Polymer, Vol.44, No.26, 8033-8040, 2003
The interfacial properties and porous structures of polymer blends characterized by synchrotron small-angle X-ray scattering
Microvoids are induced upon uniaxial drawing of films made from immiscible polypropylene (PP)/polystyrene (PS) binary blends and ternary blends of PP, PS, and a block copolymer SEEPS. The shape of the uniaxially oriented microvoids is rod- or slit-like with a high aspect ratio. Synchrotron small-angle X-ray scattering (SAXS) is used to characterize the dimensions of these microvoids. Their scattering image is an intense azimuthally narrow equatorial streak on a two-dimensional SAXS pattern. This streak is analyzed to obtain the diameter, length and misorientation of the microvoids. The microvoids length is identified as an effective measure of the interfacial adhesion and strength between phase domains. Drawn films of binary blends of PP/PS are found to have the longest microvoids. The initial addition of the block copolymer SEEPS as a compatibilizer enhances the interfacial adhesion and shortens the length of microvoids. Further addition of compatibilizer induces the formation of aggregates of a composite PS/SEEPS dispersed phase, and this leads to reduced interfacial adhesion and a longer microvoids. Interfacial properties are also dependent on the mixing protocol used to produce the blends. The transport property of the films is determined by porosity and the degree of interconnectivity. A convenient measure of the degree of interconnectivity is proposed. The degrees of interconnectivity of these films are in accordance with the interfacial adhesion and strength. Non-equatorial streaks are observed and attributed to the microvoids with a complex orientation and geometry, which are responsible for the interconnectivity among microvoids. (C) 2003 Elsevier Ltd. All rights reserved.
Keywords:membranes with elongated microvoids;the degree of interconnectivity;equatorial streaks and streaks around the beamstop without an equatorial orientation