Journal of Physical Chemistry B, Vol.110, No.23, 11496-11503, 2006
Screening and surface states in molecular monolayers adsorbed on silicon
We performed density functional theory calculations of the atomic and electronic structure of a dense monolayer of phenyl-terminated alkyl chains chemisorbed onto the (100) Si surface. Different adsorption sites were characterized for both the pristine and (2x1) reconstructed surface. A strong effect on the ordering and alignment of the molecular energy levels with respect to the Fermi level of silicon is observed, consequent to intermolecular screening in the monolayer and of the appearance of surface localized states, as a function of the different bonding arrangements. Some possible consequences of these findings are discussed in the framework of the experimental synthesis of such monolayers as molecular current rectifiers in silicon-integrated nanoscale electronics.