Journal of Physical Chemistry A, Vol.110, No.24, 7713-7718, 2006
Density-functional theory study of iron(III) hydrolysis in aqueous solution
Fe(III) hydrolysis in aqueous solution has been investigated using density-functional methods (DFT). All possible structures arising from different tautomers and multiplicities have been calculated. The solvation energy has been estimated using the UAHF-PCM method. The hydrolysis free energies have been estimated and compared with the available experimental data. The different hydrolysis species have distinct geometries and electronic structures. We have shown that improvement of theory level in calculating the electronic energy does not necessarily improve the estimated free energies in aqueous solution since the UAHF-PCM is a simple method that neglects specific interactions with the solvent. Therefore, it is important to have the correct balance between theory level used in the electronic calculation and the UAHF-PCM. The PBE/TZVP/UAHF-PCM method has been found to describe correctly the hydrolysis energies of Fe(III), deviating about 3.0 kcal mol(-1) from experimental values.