Journal of Colloid and Interface Science, Vol.227, No.2, 412-420, 2000
On the behavior of nonionic surfactants at the N-heptane/silica gel interface: Influence of the presence of interfacial water inferred from adsorption isotherms and calorimetric data
The behavior of two polydisperse nonionic surfactants, poly (oxyethylene) glycol alkylphenyl ether TX-35 and TX-100, at the prewetted silica gel/n-heptane and dried silica gel/n-heptane interfaces has been compared by the determination of the average adsorption isotherms of the polydisperse surfactants and of displacement enthalpies. From HPLC experiments, we could also separately quantify the adsorption of each ethyleneoxide (EO) fractions for silica gel from the polydisperse surfactant solution. The adsorption isotherms clearly indicate an incomplete preferential adsorption of the large (EO) chains over the small ones, as well on dried silica gel as an a prehydrated sample. This preferential adsorption and its driving force follow the solubility rules of the poly(oxyethylene) glycol alkylphenyl ether in an apolar,solvent and support the idea of a solubility-limited adsorption: solubility in organic solvents of the smaller (EO) chains is much more significant than that of the longer ones and hence prevents adsorption of the smaller species. Consequently, it is observed that the presence of interfacial water decreases the affinity of TX-35 molecules for the hydrophilic silica surface due to the hydration of (EO) chains. In contrast, for TX-100 adsorption after the prewetting treatment the dearest trend is a drastic increase of the adsorption ascribed to the additional solubilization land micellization) of the TX-100 molecules in the interfacial aqueous phase. The differential molar enthalpies of displacement show a change in the adsorption mechanism, depending on the presence of molecular water on the surface. In the initial part of the adsorption isotherm, a prevailing exothermic process is obtained dth prehydrated silica and suggests that hydration of the polar heads of TX-35 and the solubilization of the TX-35 in interfacial water are occurring. Far higher equilibrium concentrations, the enthalpies of displacement observed with the prehydrated adsorbent become slightly lower than those obtained with dry silica gel. It may be that this difference is due to the micellization phenomenon of the surfactant species with longer EO chains in interfacial water. These features emphasize the influence of interfacial water on the adsorption of EO fractions from organic solvent.