Journal of Membrane Science, Vol.279, No.1-2, 372-379, 2006
Gas permeation properties of poly (2,6-dimethyl-1,4-phenylene oxide) (PPO) derived carbon membranes prepared on a tubular ceramic support
The carbon membranes were prepared by the pyrolyisis of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) polymer coated on the surface of the macroporous alumina tubular ceramic support. The permeation results showed that gas transport through the PPO derived carbon membranes was controlled by the molecular sieving effect. The influence of the pyrolysis temperature on the permeation performances indicates that the pore structure developed at a low temperature and then the pore characteristic values (pore volume, surface area, etc.) were increased with increasing pyrolysis temperatures, and decreased at further temperature. The correlation of the permeability versus the permselectivity for the PPO derived carbon membranes showed higher values than the upper bounds for polymeric membranes, and excellent performance comparable to polyimides derived carbon membranes. (c) 2006 Elsevier B.V. All rights reserved.