화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.110, No.15, 8158-8165, 2006
Molecular mechanical devices based on quinone-pyrrole and quinone-indole dyads: A computational study
A set of intramolecularly connected dyads consisting of a quinone unit and a pyrrole or indole moiety have been designed and evaluated in quanturn-chemical calculations. It is shown computationally for several systems, depending on the length and attachment points of the interconnecting chains, that a reduction of the quinone to the semiquinone radical anion or quinolate dianion state leads to a reversible intramolecular reorientation from a,T-stacked to a T-stacked arrangement. In the rearranged structures, a hydrogen bond from the pyrrole or indole N-H function to the semiquinone or quinolate pi-system is created upon reduction. In some systems, hydrogen bonds to the semiquinone or quinolate oxygen atoms are partly feasible and will be preferred over T-stacking. The choice of systems has been based on recent computational observations related to photosystem I. Systems with pyrrole or indole units should provide a better basis for the envisioned molecular motor than recently proposed quinone-benzene dyads. The intramolecular interactions modify the quinone redox potentials. Electronic g-tensors have been computed for the semiquinone states. These reflect characteristically the presence and nature of hydrogen bonds to the semiquinone and represent suitable electron paramagnetic resonance spectroscopic probes for the preferred structures. Intramolecular proton transfer is possible in the dianionic state.