Journal of Physical Chemistry A, Vol.110, No.22, 7237-7246, 2006
Butatrienes as extended alkenes: Barriers to internal rotation and substitution effects on the stabilities of the ground states and transition states
The barriers to internal rotation of methylated, ethynylated, and vinylated butatrienes and alkenes were calculated at the CASPT2/6-31G(d)//B3LYP/6-31G(d) level. Calculated butatriene rotational barriers are lower than those of analogous alkenes, but there is a larger variance in rotational barrier for alkenes than for butatrienes. The barriers to rotation were analyzed by isodesmic equations designed to estimate the substituent effects in the ground (GS) and transition (TS) states individually. The GSs of both series are stabilized to roughly the same extent. In contrast, the TSs of butatrienes are more stabilized overall than those of alkenes. Much of the stabilization in the TS of butatrienes comes from the internal triple bond and not from the substituent. Estimation of the substituent stabilization alone reveals the TSs of ethylenes to be more stabilized by substitution than butatrienes.