Journal of the Korean Industrial and Engineering Chemistry, Vol.17, No.6, 580-585, December, 2006
Bohemite 나노졸을 이용한 내구성 코팅재료의 제조와 특성에 관한 연구
Preparation and Characterization of Hard Coating Materials Based on Silane Modified Boehmite Hybrid Materials
E-mail:
초록
Boehmite 나노졸을 이용하여 자외선 및 열 경화가 동시에 가능한 내구성 코팅재료를 제조하였다. Boehmite (AlOOH) 나노입자에 3-(trimethoxysilyl)propylmethacrylate, (3-glycidyloxypropyl)trimethoxysilane 등의 유기 실란 커플링제를 혼합하는 sol-gel법으로 내구성 코팅 재료를 만들었다. 최초 boehmite 입자가 물에서만 분산 가능하였던 반면, 유기 실란이 도입된 입자는 알코올, tetrahydrofuran, acetonitrile 등의 유기 용매에서도 분산 가능케 되어 코팅 공정상 넓은 응용이 가능하게 되었다. 코팅 박막은 spin 코팅 방식을 이용하여 다양한 기질에 제조되었으며 제조된 박막은 FT-IR, Si/Al CP MAS NMR, UV-Vis spectrophotometer, 연필 경도계 및 FE-SEM, Taber abraser 등의 다양한 방법을 통하여 분석을 실시하였다. 유기실란의 배합 비율을 조절하여 최적화된 경도와 투명성을 갖는 박막을 얻었다. 또한 플라즈마로 전처리된 PMMA기질을 이용한 실험을 통하여 전처리의 효과성을 논의하였다.
UV-thermal dually curable coating materials were prepared by the sol-gel method. Nano-sized colloidal boehmite was treated with various organo silane coupling agents. These materials could be well dispersed in various alcohols and relatively polar organic solvents such as tetrahydrofuran and acetonitrile. The coating films were prepared by a spin coating method on various substrates, which were characterized by FT-IR, Si/Al CP MAS NMR spectra, UV-Vis spectrophotometer, FE-SEM, Taber abraser, haze meter, and pencil hardness tester. The effects of molar ratio and types of silane coupling agents, curing method and ion-shower treatment were investigated. Dually curable coating method offered an optimally good quality film in both hardness and transmittance. The transparency and the hardness of the prepared films were increased with amounts of 3-(trimethoxysilyl)propylmethacrylate, and (3-glycidyloxypropyl)trimethoxysilane, respectively. The adhesion between coated layer and substrate could be enhanced by ion-shower treatment.
- Mennig M, Oliveira PW, Schmidt H, Thin Solid Films, 351(1-2), 99 (1999)
- Kawana O, Chem. Soc. Jpn., 8, 597 (1997)
- Schmidt H, J. Non-Cryst. Solids, 178, 302 (1994)
- Urreaga JM, Mater. Lett., 45, 293 (2000)
- Baude PF, Ye C, Tamagawa T, Polla DL, Mater. Res. Soc. Symp. Proc., 243, 275 (1992)
- Crivello JV, Mao Z, Chem. Mater., 9, 1562 (1997)
- Chen JI, Chareonsak R, Puengpipat V, Marturunkakul S, J. Appl. Polym. Sci., 74(6), 1341 (1999)
- Rubio E, Almaral J, Ramirez-Bon R, Castano V, Rodriguez V, Opt. Mater., 27, 1266 (2005)
- Urreaga JM, Matias MC, Lorenzo V, de la Orden MU, Mater. Lett., 45, 293 (2000)
- Kim DH, Lee DW, J. Sol-Gel Sci. Technol., 26, 783 (2003)
- Yoldas BE, J. Mater. Sci., 10, 1856 (1975)
- Dimitrijewits MI, Albani D, Arciprete CE, J. Membr. Sci., 69, 21 (1992)
- Anderson MA, Gieselmann MJ, Xu Q, J. Membr. Sci., 39, 243 (1988)
- Huang XR, Meng GL, Huang ZT, Geng JM, J. Membr. Sci., 133(2), 145 (1997)
- Wojcik AB, Klein LC, Appl. Organomet. Chem., 11, 129 (1997)
- Heise MS, Martin GC, Macromolecules, 22, 99 (1989)
- Sepeur S, Kunze N, Werner B, Schmidt H, Thin Solid Films, 351(1-2), 216 (1999)
- Gengenbach TR, Griesser HJ, Polymer, 40(18), 5079 (1999)
- Hegemann D, Brunner H, Oehr C, Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 208, 281 (2003)
- Huang CY, Chen CL, Surf. Coat. Technol., 153, 194 (2002)